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ABSTRACT

An adaptive control system is a system that detects changes in the plant parameters

and makes necessary adjustments to the systems performance. This thesis examines the

use of parallel distributed processing systems (neural networks) in adaptive control. A

general neural network structure is introduced and a description of the Backpropagation

paradigm is given. A discussion of adaptive control theory including the one step ahead

prediction control algorithm and the linear least squares estimation is given. A neural

network structure consistent with adaptive control theory is developed and tested by

simulating the lateral and directional motion of the A-4 aircraft. The network output is

then compared to the output of the true system. The purpose of this thesis is to develop

and test a neural network structure capable of performing the parameter estimation and

control functions of an adaptive controller.
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I. INTRODUCTION

An effective control system must be able to adapt to factors that effect the dynamics

of the system such as changes in the operating environment or component wear with time.

The control system having a candid ability of adaptation (that is, the control system itself

detects changes in the plant parameters and makes necessary adjustments to the

performance) is called the adaptive control system [Ref. 1:pp. 5]. Previous research

described in [Ref. 21 demonstrated how adaptive control problems can be represented

using neural networks. The system used to investigate the use of neural networks for

estimation and control was the longitudinal motion of the A-4 aircraft.

This thesis will study the use of neural networks for estimation and control using

the lateral/directional equations of motion of the A-4 aircraft. Chapter II will discuss

what neural computing is and describe neural network processing. A description of the

back-propagation algorithm will also be given. Chapter III will discuss adaptive control

theory and the relationship between neural networks and adaptive control. Chapter IV

will discuss the experimental setup including the hardware and software used, a

description of the lateral/directional motion of the A-4 aircraft and development of the

neural network model used to simulate that motion. Chapter V includes the results and

discussion of the simulation experiment.



II. NEURAL NETWORK THEORY

A. WHAT IS NEURAL COMPUTING?

Many models have been developed that try to replicate the information processing

tasks of the human brain. The study of neural computing involves the use of computer

models to perform this replication in a very simplified manner. These models, which are

a form of parallel distributed processes (PDP), are known as neural networks.

B. ANALOGY TO THE BRAIN

Although their methods of operation may differ significantly from that of the brain,

all neural network models can be described through an analogy to the components of the

brain which they attempt to model. Figure 1 is a model of the basic building block of

the human nervous system, (the neuron). Its nucleus is a processing unit which receives

impulses from other neurons through input paths called dendrites. If the input signal is

strong enough, the neuron is activated, and an output signal is generated. This output

signal is transmitted through paths called axons. The axon splits into multiple paths

which connect to the dendrites of other neurons through junctions called synapses. These

junctions are chemical in nature. The magnitude of the signal transferred depends on the

amount of chemicals released by the axons and received by the dendrites. This synaptic

efficiency or strength is what is modified when the brain learns. The synapse combined
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with the processing of information in the neuron form the basic memory mechanism of

the brain. [Ref. 3:pp. 3-4]

. Dencdriles

A_-Axon

Figure 1: Basic Building Block of the Nervous System [Ref. 3]

C. WHAT IS A NEURAL NETWORK?

The basic components of a parallel distributed processing system (ie., a neural

network), are shown in Figure 2. Each circle represents a processing unit with an

activation value a(t). This activation is processed by an activation function which

produces an output o(t). Each output passes along a connection which passes on that

output to other processing elements much the same way as the axons do to dendrites in

the human brain. Each connection is weighted to determine the effect the output will

have on the connecting processing element. All of the inputs to a processing element are
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Figure 2: Basic Components of a PDP System [Ref. 31

combined with the current activation value through an activation function F which

determines the new activation level for that particular processing element.

1). H1OW DOES A NEURAL NETWORK WORK?

Figure 3 is a simplified repr.sentation of a neural network architecture. The

network consists of a number of processing elements all connected and weighted as

described above. The elements of the network are usually grouped into layers and are

randomly or fully connected as shown. The first layer is referred to as the input buffer

and is the point at which data is presented to the network. The output buffer holds the

4



Output.. ..

buffer

Hidden (... )
layer

Input
buffer

Figure 3: Example of a Neural Network Architecture [Ref. 31

data produced as a result of processing a given input. Additional layers between the input

and output layers are referred to as hidden layers.

As mentioned earlier, learning in the human brain takes place when tile strength of

the output signal transferred from one processing element across the synapse to another

processing element is increased. This is similar to the learning process occurring in a

neural network. As input data is presented to the network through the input buffer it is

propagated to the output buffer, and the output obtained is compared to the desired

output. The error between the desired output and the actual output is calculated and the

connection weights are altered based upon this error until the desired output is obtained.

In this way learning takes place in the neural network in much the same way it does in

the human brain.

Learning can be classified as supervised or unsupervised. In supervised learning

the desired response to a given input is presented to the output buffer. If the desired

5



output is the same as the input, the network is called auto-associative. If it is different

from the input it is called hetero-associative. If the desired output is not shown tc the

output buffer unsupervised learning takes place.

E. TIlE BACK-PROPAGATION ALGORITHM

A typical network based upon the back-propagation algorithm has a structure similar

to that shown in Figure 3. It consists of an input layer, an output layer and at least one

hidden layer. A typical processing element in a back-propagation network is shown in

Figure 4. The notation in brackets symbolizes what network layer is being considered.

The notation xiq represents the existing output level of the jth element in layer s. II

IS- l- n

1 .0X, x0  .- 1 f . Is) ll [''

Iss

Is)I

n

f: sigmoid,
hyperbolic tangent,
or sine

Figure 4: A Typical Back-Propagation Processing Element IRef.31
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represents the weighted sum of all inputs to the jt' element in layer s and w),[sI is the value

of the connection weight between the i' element in layer (s-1) to the j' element in layer

S.

The back-propagation processing element transfers its inputs to other processing

elements using the following relationship:

~I O (2.1)

xj Is] = f(E,(wj, IXX, )) = f(Ij,)

The symbol f represents the transfer function, usually the sigmoid function, but can be

any differentiable function. The sigmoid function is represented in z transform notation

by:

f(z) (1.0+e-z)-1  (2.2)

1. Global Error Minimization

A network using the back-propagation algorithm can be assumed to have a

global error function which is a differentiable function of all connection weights in the

network. The error that is passed back through the layers is:

(2.3)
eIs]

which is a measure of the local error for each element in layer s. In order for learning

to take place, the global error E must b- minimized by modifying the weights in the back-

7



propagation network. If a vector i which produces an output o is input to the network,

and a desired output d is specified, then the global error in achieving the desired output

is

E = 0.5 *k ((dk-ok) 2) (2.4)

where k is used to index the components of d and o and the raw local error is dk-ok. The

scaled local error is given by

(0) _akk(oek ° = - aE/al k °)

= _aelaok * o'/ik (2.5)

= (dk-ok)*f(Ik)

To modify the network weights the following gradient descent rule is used:

AwJ, s =-lcoef*(aE/aw , ["]) (2.6)

This equation states that each weight is changed by multiplying the magnitude and

direction of the negative gradient on the error surface by the learning coefficient lcoef.

From the chain rule and equation (2.1) the change in the connection weights can be

determined by

Aw), Is] = lcoef*e,['1*x,' -1 (2.7)

8



The above relationship only applies to the output layer. The error signal for hidden units

which do not have a target output is computed recursively in terms of the error signals

of the units to which it directly connects and the weights of those connections. [Ref.

4:pp. 327] This relationship is given mathematically as:

e~s] = ffy )E .ek (2.8)

An in-depth discussion of the back-propagation algorithm is given in [Ref. 3:pp. NCI 11-

NC131].

2. Back-Propagation Algorithm Summary

If i denotes the input vector and the desired output is d, a general summary of

the steps in the standard back-propagation algorithm is given as follows:

" Propagate i from the input layer through the network to the output layer to obtain
an output o. The summed inputs I and output states xj for each processing element
are set as the information is propagated through the network.

• Calculate the scaled local error using (2.5) and the delta weight using (2.7) for each
processing element in the output layer.

" Calculate the scaled local error and the delta weight using (2.7) for each layer s
starting at the layer preceding the outnput pl ver and ending with the laver above the
input layer.

• Modify all network weights by adding the delta weights to the previous weights.
[Ref. 3:pp. NC-116]
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3. Fast Back-Propagation

This thesis uses the fast back-propagation control strategy available in

NEURALWORKS PROFESSIONAL II. The fast back-propagation algorithm is a

variation to the back-propagation algorithm that was presented by Tariq Samad at the

1988 INNS Conference. The fast back-propagation algorithm replaces equation (2.7)

with:

(2.9){ (] (s 1s1]

AW, ,I" = 1coef*e, , -x, e )

which states that the error at layer [s-I] and the activation value are added before

updating the weight. Equation (2.9) can be expanded to show the second order

relationship such that:

(2.10)
Aw = Icoef, e'I *xi-'l +ticoef *ej e*es-lj

Another form of equation (2.10) proposed by Samad adds a multiple, k, of the error to

the activation value:

AWJ, [s] = 1coef*e, j1*(x t.-1 +k*eIS-1) (2.11)

Using fast back-propagation can drastically reduce the number of iterations required to

reach convergence. [Ref. 3:pp. NC120-NC121]

10



III. ADAPTIVE CONTROL THEORY

The dynamic characteristics of most control systems are seldom constant. Typical

feedback control systems are capable of attenuating the effects of small changes in those

dynamic characteristics. However, in order to deal with large changes in the system

parameters and environment, the control system must have the ability of adaptation [Ref.

l:pp. 51. The design of an adaptive control system is conceptually simple. It includes

combining a particular parameter estimation technique with any control law. This

approach of using the estimates as if they were the true parameters for the purpose of

design is called certainty equivalence adaptive control IRef. 4:pp. 1801. Figure 5 contains

a block diagram of a general adaptive control system. A great many different algorithims

can be created depending upon the parameter estimation technique and control law being

used. In this thesis only the control and estimation of deterministic systems will be

examined. A deterministic system is one in which the system response is completely

described by the model and which modelling errors are not significantly affected by noise.

The one step ahead control algorithm will be used to develop the control model while the

back-propagation algorithm will be used as a basis for developing the estimation portion

of the adaptive controller. A more detailed explanation of adaptive control and the one

step ahead algorithm is given in [Ref. 41.

11
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tControl low I .
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Figure 5: Basic Structure of an Adaptive Controller [Ref. 51

A. ONE STEP AHEAD PREDICTION CONTROL

One step ahead prediction control brings the output y(t+d), where d represents a

time delay, to a desired output vahie y'(t+d) in one step. For most control systems, it is

assumed that the system is tineai- and finitc dinensional. As described in [Ref. 4:nn 3?-

331, the simplest model used to develop adaptive control algorithms for this type of

system is the deterministic autoregressive moving-average (DARMA) model. The

DARMA model can be described by the formula

12



A(q)y(t) = B(q)u(t)
where:

A(q -1) = I+Al(q)+...+A (q)

B(q -) = Bo+...+B (q)

and A(q) and B(q) represent matrix polynomials written in backward shift operator

notation, q-'. The system output and input are represented by the discretized form of y(t)

and u(t) respectively. The DARMA model is equivelent to an observable state-space

model and can describe the input-output properties of a general state space model having

an arbitrary initial state [Ref. 4:pp. 32]. Expanding the single input single output (SISO)

DARMA model in the shift operator and rearranging equation (3.1) gives

y(t) = b~u(t- 1) +b2u(t-2)..-a~y(t- 1 )-a 2y(t-2).. (3.2)

which can be used as a predictor for the output at the next time step

y(t+ 1) = blu(t) +b2u(t- 1)... -aly(t)-ay(t- 1)... (3.3)

where y*(t+l) is the predicted value of y(t+l). By replacing y(t+l) with the desired

output yd(t+l) and solving for u(t), the control required to bring the system to a desired

value in one step is given as:

1
u(t)= .lyd(t+ 1)+av(t)+a 2y(t- 1)..-b u(t- 1)..1 (3.4)

This equation represents the one step ahead control law. [Ref. 2:pp. 17-20] The term

yd(t+l) in equation 3.4 can represent a reference input to the system. If the past input and

output values, u(t) and y(t) are state variables, the one step ahead controller can be

thought of as a state variable feedback with a reference input controller IRef. 2:pp. 191.

13



u(t) = K(t)x(t)+r(t) (3.5)

The state variable in equation (3.5) is made up of the vector containing the inputs and

outputs of equation (3.4) and provides a controller for an adaptive algorithm [Ref. 4:pp.

118-171]. Using the vector of past input and output measurements as some state vector,

the idea of a controller based on the weighted sum of state variables and a reference input

may be developed [Ref. 2:pp. 20]. The input to a neural network processing element is

defined as the weighted sum of all inputs from processing elements connected to it.

Therefore a processing element in a neural network is capable of representing this type

of controller.

B. LINEAR LEAST SQUARES ESTIMATION

As previously mentioned, adaptive control consists of two functions, estimation and

contiol. A derivation of one form of the linear least squares estimator, the recursive least

squares method, was performed to develop a general structure for estimation in [Ref. 2].

The general form of the predictor corrector equation for all least squares parameter

estimation schemes was given as:

0(t+l) = 4)(t)+M(t)4(t-1)e(t) (3.6)

where.
M(t)..is the algorithm gain

4(t-1)..is the regression vector
e(t)..is the model prediction error

The back-propagation learning rule discussed earlier is similar to the general form of the

linear least squares parameter estimator in equation (3.6). In fact, a neural network with

14



a linear activation function is a parallel distributed processing implementation of the

general linear least squares estimator [Ref. 2:pp. 22]. Therefore, the theorems and proofs

that are applicable to least squares estimation are in a general sense applicable to a

network using the back-propagation algorithm.

By combining the control and estimation algorithms described in this and the

previous section, an adaptive control structure was developed in [Ref. 2]. Because of its

similarities with this structure, the back-propagation neural network was used to produce

models for neural network adaptive control. Neural network adaptive control structures

were developed for the longitudinal motion of the A-4 aircraft. In this thesis, those

models will be applied to the lateral/directional equations of motion of the A-4 aircraft.

15



IV. EXPERIMENTAL SETUP

A. HARDWARE AND SOFTWARE USED

All data processing for this thesis was done on the Sun 386i/250 workstation using

the Neuralworks Professional II software package by Neuralware, Inc. The Sun 386i/250

workstation uses a full 32-bit architecture with a 25 MHz Intel 80386 central processing

unit (CPU). It has an XP cache memory card with 4 MBytes of main memory for

performance that exceeds five million instructions per second (MIPS). The configuration

used for this thesis included 16 MB of memory, a VGA adapter, a 16 inch high resolution

color monitor, one 3.5 inch floppy disk drive and a 0.25 inch tape drive. The Sun

operating system provides a windowed environment which allows multiple tasks to be

performed at the same time, greatly enhancing the flexibility of the system.

The software used for this thesis, Neuralworks Professional II, offers the capability

of design'ng over a dozen different types of networks. Neuralworks supports a general

file format for reading data into the network that encompasses standard spreadsheet file

formats. Input-ouput may also be accomplished through keyboard interface, formatted

ASCII files or user defined modules IRef. 3:pp. UG215-UG250]. Different variables such

as weights, error values, and activation levels can be displayed graphically through the

use of probes which monitor and display the activation values of these parameters.

As mentioned earlier, Neuralworks provides the user with the capability of accessing

the network through the use of a user defined module. This method of access is achieved

16



by attaching a user written procedure to the network [Ref. 3:pp. UG237]. The source

code for this procedure, the USERIO program, is provided as part of the Neuralworks

software package. Control strategies for input-output operations, learning and propagation

are provided for all standard network types. They can also be user defined. The control

strategies and USERIO programs used in this thesis are the same as those used in [Ref.

2] with the exception of the numerical values for flight conditions and numerator and

denominator coefficients in the header file Transfer.txt. Complete listings of these

programs can be found in [Ref. 2]. A listing of the transfer.txt file with values used in

this thesis is found in Appendix A.

The transfer function numerator and denominator coefficients used as input for the

networks in this simulation were obtained through the use of MATLAB, a high-

performance interactive software package for scientific and engineering computation f Ref.

5:pp. 3]. In addition, MATLAB was used to perform frequency response analysis for the

various flight conditions for comparison with the responses generated by the neural

network.

B. LATERAL/DIRECTIONAL MOTION OF THE A-4 AIRCRAFT

The stick fixed lateral/directional motion of an airplane disturbed from equilibrium

is described in detail in [Ref. 6:pp. 152-175] and [Ref. 7:pp. 353-414]. As noted in those

descriptions, the !ateral/diretnni 1 Pniqtions of motion can be arranged in the state

variable form:

17



X(t) = A1(t)+Bu(t)
y(t) = Cx(t)+Du(t)

where:
(t)..yaw Z perturbation (4.1)

x(t) = p(t)..roll rate perturbation
r(t)..yaw rate perturbation

CD(t)..roll Z perturbation

and the input variable is:

u(t) = a o...aileron deflection (4.2)
a)...rudder deflection

The output variables are scaled versions of the state variables. The A and B matrices are

functions of the airplane dimensional stability derivatives, mass and inertia characteristics

for a given altitude and mach number. The C matrix is a scaling matrix and the D matrix

is a matrix of zeros. The lateral frequency response of the A-4 airplane (ie., response due

to an aileron input only) at mach .638 and 20,000 feet is presented in Figure 6. The low

frequency dutch roll mode can be seen at a natural frequency of about .3 Hertz with a

time period of approximately 3 seconds. The directional frequency response of the A-4

airplane (ie., response due to a rudder input only) at mach .638 and 20,000 feet is

presented in Figure 7. As was done in [Ref. 2], several different linear models were used

for different flight conditions in the experiment to introduce non-linearity. The linear

models used are shown in Table I.

Simulation of the lateral and directional motion of the A-4 airplane was conducted

by using the USERIO subprogram simo and the header file transfer.txt. Continuous state

18



Aileron-input Bode Plot for the A-4 Aircraft60 r---r- . r r- r- . . . .

20
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Altitude = 20,000 ft. frequency (l lz) Mach = .638

Figure 6: A-4 Lateral Frequency Response at Mach .638, 20,000 Feet

Table I: Flight Conditions Used in This Experiment.

Flight Condition Mach # Altitude

1 .4 sea level
2 .638 20,000 ft.
3 .5 35,000 ft.
4 .7 35,000 ft.
5 .85 sea level
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Rudder-input Bode Plot for the A-4 Aicaft
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Figure 7: A-4 Longitudinal Frequency Response at Mach .638, 20,0() Feet

space models of each of the five flight conditions were produced and converted to

difference equations (3.3) using the MATLAB script file shown in Appendix 13. The

continuous state space matrices and discrete transfer function matrices for each condition

are shown in Appendix C and Appendix D. Data for the transfer.txt header file was

obtained by making computations described in the MATLAB reference manual IRef. 6:pp.

C4-C26J. The matrices were converted from continuous to discrete state space fom using

a matrix polynomial algorithm IRef. 2]. Next the discrete matrix was converted to a

transfer function matrix using:

20



H(z)=C(zI -A)-B=Y(z)/u(z) (4.3)

By replacing the z transform with the backward shift operator q-1, the numerator and

denominator terms were used to create the DARMA model:

A(q)y(t) =B(q)u(t) (4.4)

Rearranging equation 4.4 gives:

£(t)=B(q)u(t)-(A(q)- 1)y(t) (4.5)

By expanding the matrix polynomials the following equations are obtained:

bplq-I +b 02 - ..+b 04 q -

y(t)= blq-' +b jq-2 .. +bpq-4  u(t)-[aq- +a q-2.. +a4q -]y(t) (4.6)
b q-' b fl-l..+b q -4 2 4(.6

b,lq-' +b,2q - +b -4

By expanding the delay operator terms four recursive equations are obtained of the form:

yjt = [b ui(t-i) -1 ', [a v U-i)] (4.7)

where the output y, is made up of the outputs P(t), p(t), r(t), and cD(t) and the a, terms are

the same for each equation. The parameters in equation (4.5) and (4.6) are used in the

USERIO program to simulate the lateral motion of the A-4 aircraft. A sample of the B(q)

and A((q) - 1) coefficients used for the condition of 20,000 feet and Mach .638 with

aileron input only, is given in Table I.
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Table II: Paramters for Flight Condition 20,000 Feet/Mach .638 With a Sampling
Time of 0.1 Seconds

B(q) = -1.2688e-04 2.6534e-04 4.3990e-05 -1.8149e-04
1.5764e-01 -4.6480e-01 4.6208e-01 -1.5491e-01
7.098le-05 -2.3526e-04 2.5885e-04 -9.3603e-05
1.4496e-05 -1.4546e-05 -1.24 4 9e-05 1.3462e-05

A(q)-I =-3.7928e+00 5.4207e+00 -3.4572e+00 8.2934e-01

Note that the B(q) and A((q) - 1) terms match the numerator and denominator terms in

the transfer function matrix for this flight condition shown in Appendix C. The discrete

frequency response for this simulation is shown in Figure 8 while the discrete frequency

response for this simulation due to a rudder input is shown in Figure 9.

C. MODEL DEVELOPMENT

A detailed description of the development of models used for this thesis is given

in [Ref. 2]. The first model used was the linear neural network with no hidden layers

paramaterized as four transfer functions and shown in Figure 10. The first layer, the

feedback layer, consists of past values of outputs and inputs. From left to right the first

three elements are past values of input 8(t-1), 8(t-2) and 6(t-3) where the delay value is

noted in parentheses. The remaining elements are past output values for P(t), p(t), r(t)

and 0(t). The second layer, the command layer, replicates the first with the exception
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Aileron-input Discrete Bode Plot for the A-4 Aircraft
60 ....... ....... ..-

40 -

20-

0 ............................. .......................................- - " -

-20

-40 -
-60 .. "

-80 -

-100p(t)
100 phii(t)-.

-120 - bcta(t) -

1102 10 1 10

Altitude = 20,000 ft. frequency (liz) Mach = .638

Figure 8: Discrete Frequency Response for the Lateral Motion of the A-4 Aircraft

of the reference input r(t-1), which simulates the state variable plus reference input for

the control law. The third layer, the control layer, consists of one element which is a

weighted sum of the reference input and the output command layer.

The ouyjut elements each have eight connections, four of which are connected to

the 8(t) elements which represent the b, terms in equations (4.5) and (4.0.. Using this

network structure, the weights of each output element can be compared directly to the

coefficients of the true system being simulated.
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Rudder-input Discrete Bode Plot for the A-4 Aircraft
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Figure 9: Discrete Frequency Response for thle Longitudinal Motion of thle A-4

Aircraft

For the purpose of control and estimation, this network can be considered to have

no hidden layers since all inputs are directly connected to the Output layer. hlowever,

when examining it from a neural networks standpoint, it can be seen that thle single

element in the third layer is a hidden layer through which the output of layer two is

transferred to the fourth layer.

The second type of network used in this thesis is shown in Figture 11. It replicates
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Figure 10: Linear Neural Network Adaptive Controller Structure

the linear neural network shown in Figure 10 with the exception that the output layer is

fully connected to the feedback and control layers.

I). NETWORK STABILITY

Systems whose transfer functions have poles or zeros outside the unit circle in the

z plane are called nonminimuni phase systems. The poles and zeros of A(q) and B(q) for

the simulation at condition 2 (Table I), for an aileron and rudder input are given in Table

Ill. In the case of a simulation of an aileron input it can be seen that P3(t) and r(t) have
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Figure 11: Fully Connected Linear Neural Network Adaptive Controller Structure

zeros outside the unit circle and p(t) has a zero on the unit circle. In the rudder input

case, P(t), p(t) and D(t) all have zeros outside tile unit circle and r(t) has a zero very near

the unit circle. These zeros are nonminimum phase. Although the simulation used in the

USERIO program could generate data indefinitely, modeling errors result from the

recursive nature of the simulation and the presence of nonminimurn phase zeros. Errors

in the simulation propagate at a rate proportional to the power of the absolute value of

the system zeros. [Ref. 2 :pp. 431 Since nianv of the zeros of the system are outside the

26



Table IHl: Poles and Zeros of the Discrete Simulation for Condition 2 with a
Sampling Time of 0.1 Seconds

aileron input rudder input
poles =0.9779 + 0.1 859i 0.9779 + 0.1 859i

0.9779 - 0.1859i 0.9779 - 0.1859i
1.0001 1.0001
0.8370 0.8370

zeros(,) = 1.8664 1.0004
0.995 1 0.8393

-0.7702 -0.7067

zeros~)= 1.0000 1.3381
0.9743 + 0.1830i 1.0000
0.9743 - 0. 1830i 0.7738

zeros(t) = 1.2334 + 0.1858i 0.9994 + 0.0293i
1.2334 - 0.1858i 0.9994 - 0.0293i
0.8476 0.8372

zeros,,(t) =0.9743 + 0.1830i 1.3347
0.9743 - 0.1830i 0.7740

-0.9450 -0.9300

unit circle, errors in the simulation could grow unbounded. To keep these errors from

becoming signifigant, the USERIO program resets the simulation every 9000 cycles.
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V. RESULTS AND DISCUSSION

This chapter will examine the results of the simulations conducted using the

networks described in the previous Chapter. The ability of the linear neural network

adaptive control structure in estimation will be examined. Performance of the network

will be determined through the simulation of lateral and directional motion of the A-4

airplane. Finally, a fully connected networks' operation will be examined.

A. ESTIMATION DEMONSTRATION

Estimation trials were conducted by using the neural network adaptive control

structure described in chapter 4 and skipping the control law synthesis phase of op ration

for each sample. To do this, the weights between all elements in the command layer,

except the reference input, were set to zero.

1. Linear Network Estimation of Lateral Motion

The ability of the linear neural network in estimation was first examined by

simulating the lateral motion of the A-4 aircraft at Mach .638/20,000 feet. The network

used is shown in Figure 10 and was trained for 50,000 (5,000 seconds), 100,000 (10,000

seconds), and 200,000 cycles (20,000 seconds) using a pseudo random binary input shown

in Figure 12. This input consists of a random binary input that has been bandlimited by

allowing it to change every two samples versus every sample. The drop in energy above
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ten 1 lertz limits the excitation of high frequency noise which was shown to be a problem

in previous research.

Sample Pseudo Random Binary Spectrnl Conict for a Rudder Input
20. ........... .-. ,

0

-20

-4

g, -60
m

-80

fiC(Iuency IIz

Figure 12: Sample Pseudo Random Binary Spectral Content

Because this is a linear network, the weights of the network can be equated

to the numerator and denominator terms in the transfer function model of the lateral and

directional equations of motion. A comparison of the weights for p(t) and 3(t), which are

representative of the lateral and directional motion of the A-4 aircraft, are compared with

the true system variables in Table IV.

The values of b, and a, determined by the network for p(t) are similar in

magnitude to the true values although in some cases the signs are incorrect. This is not

true for Pl(t). This would seem to indicate that the network has built a better

representation of those terms affected tv an ailcron inpt. (ie., lateral motion), 'hich is

20)



Table IV: Network Weights at 200,000 Cycles

Terms 500k Model True Model

bpi 1.556e-01 1.576e-01
bp2  1.212e-01 -4.648e-01
bp3 5.210e-02 4.621e-01
bp 3.440e-02 -1.549e-01

api -9.680e-01 -3.793e+00
ap2  -2.729e-01 5.421e+00
ap3  -1.115e-01 -3.457e+00
ap -1.416e-01 8.293e-01

bpi 5.023e-02 -1.269e-04
bP2 6.290e-C-'2 2.653e-04
b03  -9 9'"r -03 4.399e-05
b, I ' 20e-03 -1.815e-04

ap1  6.520e-03 -3.793e+00

a,2 -1.025e-03 5.421e+00
a3 -6.390e-02 -3.457e+00
a, 5.830e-02 8.293e-01

being simulated in this case.

The weights of the network can be used to generate discrete-time Bode

frequency response plots for comparison with the frequency response of the true system.

The frequency response plots for the lateral modes of the A-4 aircraft estimation using

the linear network are shown in Figure 13 through Figure 16. The response for 3(t) is

shown in Figure 13. The network failed to develop a good frequency model or the proper

mode shape for this parameter. However, Figure 14 shows that a much better model of

the p(t) parameter was achieved. This is to be expected since the level of excitation of

the p(t) and cI(t) variables is much larger since the only input being simulated was that
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from the aileron. The lack of excitation of the directional variables 13(t) and r(t) is also

shown in Figure 15 where the network did a poor job of modelling the frequency

response of r(t). In Figure 16, the frequency response of 4(t) is modeled, however the

proper mode shape is not obtained even through increased training.

2. Linear Network Estimation of one Parameter

Because there were large differences in the orders of magnitude between the

b coefficients, and NeuralWorks Professional II only provides precision to (1O)6, it was

difficult for the network to model the entire system. Therefore a second experiment using

the linear network involved a modification in which the 13(t), r(t) and 4t(t) processing

elements in the network were disabled. It was thought that the increased excitation of a

single parameter due to the lack of problems caused by large differences in orders of

magnitude between parameters would give a better model of the p(t) parameter. Figure

17 shows that a near exact model of the frequency response and mode shape of p(t) was

obtained by 50,000 cycles (5,000 seconds).

3. Network Estimation of Directional Motion

The ability of the linear neural network in estimation of the directional motion

of the A-4 aircraft was tested using the same network discussed in the previous section.

However, the input presented to the model by the USERTO program now simulated the

directional motion of the A-4 aircraft. The system and network model frequency

responses due to a rudder input are shown in Figure 18 through Figure 21. The error for

each output resulting from testing this network with a pseudo random binary input was
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Figure 17: System and Network Frequency Response for p(t)

less than five percent for the 3(t) and p(t) variables, zero percent for r(t) and

approximately forty percent for 4)(t). This would indicate that the response for all

variables except (1)(t) have been learned by the network and should be modelled correctly.

However, as shown in Figure 18 through Figure 20 this is not the case. Once again the

networks failure to model the entire system response is due to the failure of the

Neuralworks Professional II software to handle large differences in the orders of

magnitude between the b coefficients in Equation (4.6). Figure 18 shows that higher

frequency noise dynamics adversely effected modeling of the response above one Hertz

but, by 50,000 cycles (5,000 seconds), a good approximation of the frequency response

and mode shape was achieved for the (t) parameter. However, the model does not

change much with further training and the higher frequency mode shape is not modelled
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even after 500,000 cycles (50,000 seconds). In Figure 19 it can be seen that the modeling

of the higher frequency mode shape for the dutch roll response of r(t) improved with

increased training. Although the entire mode shape, with the exception of the low

frequency zero response, was modelled well, the magnitude of the networks response did

not give an accurate representation of the true system response. The low frequency zero

response was not modeled because the system is modelling the high frequency dyanamics

of the system and does not have enough degrees of freedom to model the entire system.

As expected, Figure 20 and Figure 21 show that the p(t) and O(t) parameters are not

modeled very well during estimation of the directional motion of the A-4 aircraft. In

figure 20 the low frequency mode shape is modelled, however the magnitude is less than

that of the true system. The dutch roll response is not modelled and the presense of

unmodelled noise dynamics in the frequencies above one Hertz is signifigant. In figure

21 it can be seen that neither the frequency response or the mode shape are modelled over

the entire frequency range. An examination of the networks output for the 4(t) parameter

shows that the output is not indicative of the systems response to a random binary input.

Rather it seems to be a numerical oscillation about some mean value which is unaffected

by the input to the system.

4. Fully Connected Linear Neural Network

The second linear network to be examined was the network shown in Figure

11 and discussed in the previous chapter. The network was fully connected which means

that all the elements in the feedback layer were connected to all the elements in the

output layer. The network was trained on inputs simulating the lateral motion of the A-4
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aircraft at Mach .638 and 20,000 feet. The network seems to have developed a very good

model of the input-output relationship of the true system. The dynamic estimation error

of all paramaters with the exception of (D(t) went to zero in under 5,000 cycles (500

seconds). This is due to the highly overparamaterized nature of this network which

allows a better ballanced representation of the system. Also, because it is fully connected,

crosstalk between elements allows each output to develop dependencies on past values

of other outputs.
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VI. CONCLUSIONS

In this thesis a description of neural network processing and adaptive control theory

has been presented. The relationship between neural networks and adaptive control theory

was discussed as was the use of these two tools to develop a neural network model for

adaptive control. That model was used to show that neural networks can be successfully

used in the estimation of linear approximations of the lateral and directional motion of

the A-4 aircraft.

The use of the neural network adaptive control structure was first demonstrated on

the system of lateral motion of the A-4 aircraft. Estimation capabilities were shown using

a linear neural network paramaterized as four separate transfer functions. The weights

of the network were compared to the bi and a, terms of Equation (4.6) to show that the

network built a better representation of those terms affected more by an aileron input (ie.,

p(t) and 4D(t)). The weights of the network were then used to generate discrete-time Bode

frequency response plots for comparison with the frequency response of the true system.

The network performed well at modelling the p(t) and 4(t) variables and not the P(t) and

r(t) variables. This was due to the fact that the level of excitation of the p(t) and 4(t)

variables was much larger because the only input being simulated was that from an

aileron. A second experiment was conducted with this network to illustrate the problems

the network has with modelling the entire system response because of large differences

in the orders of magnitude between the b coefficients of Equation (4.6). The 3(t), r(t),
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and 4(t) parameters were disabled and the network was run as before. The increased

excitation enabled an almost exact model of p(t) to be obtained by 50,000 cycles (5,000

seconds).

A second demonstration of this structure on the system of directional motion of 'Lhe

A-4 aircraft reinforced the importance of excitation levels on parameter estimation. Those

variables describing the directional motion due to a rudder input (ie., P(t)), and r(t), were

modelled reasonably well where as the p(t) and 4(t) parameters were not. The networks

failure to model both the high and low frequency dynamics of the r(t) variable showed

that the network did not have enough degrees of freedom to model the entire system.

A final fully connected version of the linear network proved to be much faster and

more efficient in arriving at a representation of the true system. This was due to the

highly overparamaterized nature of the network which allowed for a better ballanced

representation of the system. In addition, crosstalk between elements allowed outputs to

develop dependencies on past values of other outputs.

The potential for the use of neural networks in adaptive control shows much

promise. Further study is needed to develop further nonlinear and linear control and

estimation neural network structures. Ways of increasing the stability of the networks

other than random adjustments of the learning rate should be pursued. With the continued

advancements being made in modern aircraft systems, the need for better automatic

control systems is apparrent. Neural networks offer one way of making those

improvements.
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APPENDIX A: NEURALWORKS PROFESSIONAL II ASSOCIATED PROG;RAMS

/*This file contains transfer function data for aileron inputo nly

SSource: transfer.txt*
Executable: Simo

*Version: 1.5
*Date: 22 November 1989

" Author: P. W. Scott
" Project: Neural Networks in Adaptive Control

Envi ronment: U1NIX/SunOS C
" Path: eilecsn:/hiome/rs;cott/niworks,/textfilesq
"Description: This is th h-Arier file used to define tho'.rlc

*used in the USEPIO subprogram simo). 1his allows e-l-y
* reconfiguration of tlje executablen- by simply chriinsi
* iniformat ion in the header f ile . I oputs; inc ml" 1lt It II'
* airspeeds, the sampling time, select.'d frequon-i'.and
*and weighit jos for a sum of sine waver; input, lat-1P; fc, tilo
*inputs, conditions, and states, and the coefficiprsto for th *
* ~numerators and denominators of the system and] varic-,)!il, s
* used to gienerate filtered noise.

*Pevisions: -- inclusion of multiple input typos

* -- Punning the sim at twice the speed of the, netwotA:

/* Altitudes in thousands of feet *

static double altitude[5)-

0.0, 0. 20, 0. 3500. .350, 0.0

/* Mach flumbers *

!-tat ic double mach( 51-

/* Sampling Time *

static double ts-{0.l);

/* Frequencies for suim of sine waves input *

static double freq(RJ-{
0. 005, 0. 09, 0. 11,0. f5, 1. 5,2.75, 3 .0, 10.0

/* Frequency weighting for sum of sine waves input *

s.tatic double weiq7ht[PJ)-{
2. 0, 3. 0,2.0,3.0, 2.0,3-0,2. 0, 0.5
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/* Input, condition, state, and filter labels */

static char *input name))={"llleqal Input","Pandom Binary",
"Filtered W'","Composite Sirie","Swspt Square Wave-Tpst Only",
"Composite Sim","Composite Time");

static char 'condition name[=("llleqal Condition",
"M 0.4/SL', 'M 0.638/20Y", "M 0.5/35K", "M 0.7/35", " 0.85/S|")

static char *state name[]j="lIlegal State","Eleta(t)","p(t)","lr(t)", °'phi(t)"} ;

static char *filter name[j={"Illeqal Fi]ter","0.5 1h co",
"0.2 liz co","p App M 0.638/20K");

/* Numerator coefficients */
/* Order is bl-b4,pl-p4,rl-r4,phil-phi4 for the inner indices and

Condition 1-Condition 5 for the outer index */
static double num[5)[4)[4j=

1 -9.392687191756011e-05,
1.126920-JO2549938e-04
8.838979111214229e-05,

-8.642765199473601e-05,
1.561722084664705e-01

-4.329135858468582e-01,
4.196908292547947e-01

-1.429494518744069e-01,
1. 511260356292787e-04,

-2.977904053036440e-04,
1. 770908276808036e-04,

-9. 699117334283081e-06,
7.434958128005320e-05,

-6. 148022050922464e-05,
-5. 645812760857183e-05,
6.431610744550564e-05,

-1. 268813357100385e-04
2.653399472150042e-04
4.3989916350906I0e-05,

-1.814856787811792e-04
1. 576364838437199e-01,

-4.648010433956937e-01,
4.620167390042948e-01,

-1. 549121795323204e-01,
7.09814837971;0106e-05

-2.352629618602720e-04,
2.58847541547702]e-04

-9.360301896913479--05,

3.449
5
98645120176e-05,

-1.4546-46041132435e-05
-1.244860342897169e-05,
1.346212239916600e-05,
6.7298440313958

7
1e-03,

:.197681192846915-03,
-7.854672531813378e-03
6.301412209285706e-03
1.062470921896428e-01,

-3.159231857052616e-01,
3.187058002725220e-01,

-1.0902Q7067569025e-Ol,
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-1.439912417202382e-02,
4.165280352077083e-02,

-4.007056866796743e-02,
1.285064639771638e-02,
3.238832047398610e-04,

-3.218367332475935e-04
-2.938511651602305e-04,
3.255617941835265e-04
3.510545510985175e-04,

-3.016594272722273e-04
-3.514485515312415e-04
3.063414052184577e-04,
8.470325685559521e-01,

-2.409702137837106e-02,
2.372696417616602e-01,

-8.100268483354545e-02,
-3.791587131774186e-04,
5.494087456341390e-04,

-5.547248529342852e-04
1.887628013740317e-04
1.951497914332023e-05

-1.702179099893897e-05,
-1.635670722155424e-05,
1.815150025163970e-05,

-7.784614644652965e-03
5.747800761842115e-03,
7.031496295012651e-03,

-4.910648731566991e-03,
2.851117109745740e-01,

-6.140646745749962e-01,
5.592805587509355e-01

-2.303275951505137e-01,
3.021886108613536e-03,

-7.749379513904309e-03,
6.626904564018155e-03,

-1.815375879254288e-03,
6.763446029012243e-05,

-1.785673815124511e-05,
-1.410949638280812P-05,
4.836704248745161e-05,

1;

/* Denominator coefficients A/
Order is denl-den4 for the inner index and Condition 1-Coardition
for the outer index */

static double den[(5j4I-

-3.617552264583115e 00,
5. 030111197631264e400,

-3. 185133557671352e+00,
7.725952321069285e-01,

-3.792822130561251e+00,
5.420696316853906e+00,

-3.457219170675313e+00,
8. 293442091087954e-01,

-3 .844978956470955ef00,
5. 604043890520188c,+00,

-3. 669675666585049e+00,
9. 106105230285739e-01,

-3.760009611363964e+00,
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5.409395071955029e+00
-3 529313846151502Fe400,
8. 799325695122845e-0l,

-2.914074004278131ef00
3. 574145070480903e'00,

-2. 219383806239528e400,
5. 593946847263199e-01,3;

/* Coeffieients for filtered noise terms */
/* Order is numl-num3 & denl-dei2 for the innpr index and filteri-

filter3 for the outer index */

static double noise_coeff(3][5]=

?.O"=C7C251279634e-V2,

4.171340502559269e-02,
2.085670251279634e-02,
-1.561018075800718e+00,
6.413515380575631e-01,
5.063654276859733e-03
1.012730855371947e-02,
5.063654276859733e-03,
-1.822694925196308e400,

8.371816512560227e-01,
0.0,
-3.33560549727374le-02,
-2.498849406787340e-02,
-1.748500141242948e+00,
8.340433823724368e-01
1;
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/* This file contains transfer function data for rudder inputs only */

/* *** ******* ***** ****** ********* ** * *********

* Source: transfer.txt *

* Executable: simo *
* Version: 1.5 *
* Date: 22 November 1989 *
* Author: R. W. Scott *

* Project: Neural Networks in Adaptive Control
* Environment: UNIX/SunOS C *
* Path: eileen:/home/rscott/nworks/textfiles *
* Description: This is the header file used to define the variables *

* used in the USERIO subprogram simo. This allows easy *
* reconfiguration of the executables by simply changing *
* information in the header file. Inputs include altitudes, *

* airspeeds, the sampling time, selected frequencies and *
* and weightings for a sum of sine waves input, labels for the *

* ln-uts, conditions, and states, and the coefficieiits for the
* nmerators and denominators of the system and various filters*
* used to generate filtered noise. *
* Revisions: -- Inclusion of multiple input types *
* -- Running the sim at twice the speed of the network *
************************************************* ** ******************* *** ** * *

/* Altitudes in thousands of feet */

static double altitude[5]=

0.0,0.20,0.350,0.350,0.0
1;

/* Mach Numbers */

static double mach[5]=

0.4,0.638,0.5,0.7,0.85
1;

/* Sampling Time */

static double ts={0.l};

/* Frequencies for sum of sine waves input */

static double freq(8]-(
0.005,0.09,0.11,0.65,1.5,2.75,3.0,10.0
1;

/* Frequency weighting for sum of sine waves input */

static double weight[8]-{

2.0,3.0,2.0,3.0,2.0,3.0,2.0,0.5};

/* Input, condition, state, and filter labels */

static char *input name[]={"Illegal Input"l,"Random Binary",
"Filtered RB","Composite Sine","Swept Square Wave-Test Only",
"Composite Sim","Composite Time";
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static char *condition name[]={"Illeqal Condition",
"M 0.4/Sl,", "M 0.638/20K", "M 0.5/35K", "M 0.7/35", "M 0.85/F;L"};

static char *state namn[ ]=("Illegal State", "Beta(t) ", "p(t)
"-r (t)", "ph'i (t) "}) ;

static char *filtername[]=("Illegal Filter","0.5 11z co",
"0.2 Ilz co","p App M 0.638/20K");

/0 Numerator coefficients */
/* Order is bl-b4,pl-p4,rl-r4,phil-phI4 for the inner indices and

(Ccndition 1-Condition 5 for the outer index */
static double nurp[5][4][4]

( 1.800083273932040e-02,
- .906984244706855e-02,
-1.0832241A4701473c-02,
1. 189637920292630e-02,
5. 005974533658364e-02,

-1.557746320031326e-01,
1. 564735697592665e-01,

-5. 075868309271747e-02
-2. 949068758631812e-02
8.355569801024743e-02,

-7 .874398002795457e-02,
2. 465824221716073e-02,
1. 133701723912139e-04

-1.348051557705787e-04
-1. 040764174029540e-04
1.047840637068420e-04,
1. 282768174976745e-03

-1. 453312059030765e-04,
-5. 90751062843342le-04
7.611636927604692e-04,
4. 570720462542699e-03,

-1. 422345894434773e-02,
1 .438525470033047e-02,

-4.732516218525773e-03,
-6. 894195094126143e-03,
1. 955169874457852e-02,
5. 769610846872886e-03,

-1. 842807755316045e-02,
6. 598430260407184e-06,

-7. 778000894020920e-06,
-6 122857291845918e-06,
6. 339383324838188e-06,
8.650627034337610e-03,

-9.732543484972211e-03,
-5. 476291419152179e-03,
6. 551765806401710e-03,
3. 523155350109652e-02,
1. 129162889664674e-01,

-3 .802821756769237e-02,
-6 803143835536174e-02,
1. 996683992571242e-01,

-1 952861276856299e-01,
6. 363337184722417e-02,
3. 757891436197980e-04,

-4 356397715552518e-04,
-3 .64386668831873le-04,
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3.904802 108620764e-04,
1.,308914525035565e-02,

-1. 42451214 1158729e-02,
-8. 862406600178563e-03,
1. 00163018383168le-02,
3. 722835170386629e-02,

-1. 15749419364933le-01,
1. 163752393857700e-01,

-3.7854 17172470429e-02,
-9. 743756038530726e-03,
2 .842606123231395e-02,

-2. 763269535968638e-02,
8. 946102177077919e-03,
2. 422209673103026e-05,

-2. 787952587457454e-05,
-2. 407882636212832e-05,
2. 344827517997139e-05,
8.954306417501723e-02,

-7. 686065616734794e-02,
-6.3 10568929134819e-02,
5.04 2267913457954e-02,
1. 38171640223291le-01,

-4.42820105363705le-01,
4. 4327 64 52560332 le-Ol,

-1. 386279874199177e-01,
-1. 150444201425271e-01,
3. 047 98222 58 363 59e-01,

-2 .659113340054455e-01,
7. 607349598960700e-02,
2. 505311791232145e-04,

-2.0802498954 17552e-04,
2. 038679740665739e-04,

/* Denominator coefficients *
/* Order is denl-den4 for the inner index and condition 1-Condition 5

for the outer index */
static double den[5][4]=

-3. 617552264583112e+00,

5. 030111197631257e+00,
-3. 1851335 57 67134 5e+00,
7.72595232 1069264e-01,

-3. 792 82213 056 124 8e+00,
5. 420696316853899e+00,

-3.4572 19170675306e+00,
8. 293442091087930e-01,

-3. 899605053343789e+00,
5. 768525031214528e+00,

-3.83355543964 3835e+-00,
9. 646017086430867e-01,

-3. 760009611363958e+00,
5. 409395071955011e+00,

-3. 529313846151485e+00,
8. 79932 569512278 7e-01,

-2.914074004278134e+00,
3. 574145070480905e400,

-2. 219383806239528e+00,
5. 593946847263198e-01

48



APPENDIX B: MATLAB M-FILE

% CONTINUOUS STATE SPACE TO DISCRETE TRANSFER FUNCTION
CONVERSION

" Altitude = sea level
" Mach# = .4

%u = 446.6 fps

format short e
% Initial plant matrix
a=[-.243 0. -1. .072; -27.3 -1.699 .948 0.;
14.9 .065 -.638 0.; 0. 1. 0. 0.1

% Initial control matrix
b=[0.; 16.526; .0671; 0]

% Convert b from radians to degrees
b=b*pi/1 80;
% Compute scaling matrix 'c'
c=eye(a); d=[0 0 0 0]',
w=logspace( -3,2);
[ mag,ph ase] =bode (a, b,c,d, 1 ,w);
c=max(mag);

c=(x .Ic)
c=diag(c);

%Balance a,b, and c matrices
[ab,bb,cbj =obalreal(a,b,c);

% Convert to discrete time

[ad,bdj=c2d(ab,bb,t);

% Convert to transfer function
[NUM,DENI=ss2tf(ad,bd,cb,d, 1)
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APPENDIX C: CONTINUOUS STATE SPACE EQUATIONS AND DISCRETE
MATRIX POLYNOMJIALS FOR AN AILERON INPUT

Sampling Time of 0.1 Seconds

FLIGHT CONDITION 1

Altitude = sea level

Mach# = .4

u =446.6 fps

-2.4300e-OO1 0 -1.0000e+000 7.2 000e-002
-2.7300e+001 -.1.6990e+000 9.4800e-O01 0
1.4900e+001 6.5000e-002 -6.3800e-OO1 0

o 1.0000e+000 0 0

0
1 .6526e+00 1
6.7 1 OOe-002

0

NUM =
o -9.3927e-005 1.1 269e-004 8.8390e-005 -8.6428e-005
0 1 .5617e-001 -4.3291e-001 4. 1969e-001 -1 .4295e-001
0 1.5113e-004 -2.9779e-004 1.7709e-004 -9.699le-006
0 7.4350e-005 -6.1480e-005 -5.6458e-005 6.4316e-005

DEN =
1.0000e+000 -3.6176e+000 5.0301e+000 -3.1851e+000 7.7260e-001
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FLIGHT CONDITION 2

Altitude = 20,000 ft.

Mach# = .638

u =660 fps

-8.2900e-002 0 -1.0000e+000 4.8800e-002
-4.5460e+000 -1.6990e+i000 1.7 170e-001 0
3.3820e+000 -6.5400e-002 -8.9300e-002 0

0 1.0000e+000 0 0

0
2.7276e+001I
3.95 20e-001I

0

NUM-=
0 -1.2688e-004 2.6534e-004 4.3990e-005 -1.8149e-004
0 1.5764e-001 -4.6480e-001 4.6208e-001 -l.5491e-00l
0 7.0981e-005 -.2.3526e-004 2.5885e-004 -9.3603e-005
0 1 .4496e-005 -1 .4546e-005 -1 .2449e-005 1 .3462e-005

DEN =
1.0000e+000 -3.7928e+000 5.4207e+000 -3.4572e+000 8.2934e-001
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FLIGHT CONDITION 3

Altitude = 35,000 ft.

Mach# = .5

u =487 fps

-8.6400e-002 0 .-1.0000e+s000 6.6000e-002
-9.0300e+000 -5 .6200e-00 1 4.0400e-0O 1 0
6.5200e+000 -6.7600e-002 2.8800e-00l 0

0 1.0000e+000 0 0

-9.OOOOe-004
5 .4000e+000

-7.5900e-00 I
0

NUM =

0 6.7298e-003 -5. 1977e-003 -7.8547e-003 6.3014e-003
0 1.0625e-001 -3. 1592e-001 3.187 le-001 -1 .0903e-001
0 -1.4399e-002 4.1653e-00 2 -4.0071e-002 1.2851e-002
0 3.2388e-004 -3.2184e-004 -2.9385e-004 3.2556e-004

DEN=
1.0000e+000 -3.8996e+000 5.7685e+000) -3.8336e+00 0 9.6460e-001

52



FLIGHT CONDITION 4

Altitude = 35,000 ft.

Mach# = .7

u =681 fps

-1.2210e-001 0 -1.0000e+000 4.7000e-002
-2.2700e+001 -8.1900e-00l 5.6000e-OO1 0
1.1990e+001 3.3400e-002 -3.3800e-O0l 0

0 1.0000e+000 0 0

b =
0

1.1770e+001
-2.7500e-00 1

0

NUM-=
0 3.5 105e-00 4 -3.0166e-004 -3.5 145e-004 3.0634e-004
0 8.4703e-002 -2.4097e-001 2.3727e-001 -8,1003e-002
0 -1.791 6e-004 5.4941e-004 -5.5472e-004 1 .8876e-004
0 1.951 5e-005 -1 .7022e-005 -1 .6357e-005 1.8 152e-005

DEN =
1.0000e+s000 -3.7600e+000 5.4094e+(X)0 -3.5293e+000 8.7993e-001
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FLIGHT CONDITION 5

Altitude = sea level

Mach# = .85

u = 950fps

a =

-5.7500e-001 0 -1.0000e+000 3.4000e-002
-1.1760e+002 -3.8300e+000 1.9300e+000 0
6.8000e+001 4.5600e-002 -1.4040e+000 0

0 1.O000e+O00 0 0

b =

0
6.4400e+00 1
5.0500e+000

0

NUM =
0 -7.7846e-003 5.7478e-003 7.0315e-003 -4.9106e-003
0 2.8511e-001 -6.1406e-001 5.5928e-001 -2.3033e-001
0 3.0219e-003 -7.7494e-003 6.6269e-003 -1.8154e-003
0 6.7634e-005 -1.7857e-005 -1.4109e-005 4.8367e-005

_-,VN =
1.0000e+000 -2.9141e+000 3.5741e+000 -2.2194e+000 5.5939e-001
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APPENDIX D: CONTINUOUS STATE SPACE EQUATIONS AND DISCRETE
MATRIX POLYNOMIALS FOR A RUDDER INPUT

Sampling time of 0.1 seconds

FLIGHT CONDITION 1

Altitude = sea level

Mach# = .4

u = 446.6 fps

a=
-2.4300e-001 0 -1.0000e+000 7.2000e-002
-2.7300e+001 -1.6990e+000 9.4800e-001 0

1.4900e+001 6.5000e-002 -6.3800e-001 0
0 1.0000e+000 0 0

b =

6.1 785e-004
1.2846e-001

-1.1414e-001
0

NUM =

0 1.8001e-002 -1.9070e-002 -1.0832e-002 1.1896e-002
0 5.0060e-002 -1.5577e-001 1.5647e-001 -5.0759e-002
0 -2.9491e-002 8.3556e-002 -7.8744e-002 2.4658e-002
0 1.1337e-004 -1.348 le-004 -1 .0408e-004 1.0478e-004

DEN =
1.0000e+000 -3.6176e+000 5.0301e+000 -3.1851e+000 7.7260e-001
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FLIGHT CONDITION 2

Altitude = 20,000 ft.

Mach# = .638

u = 660 fps

a=

-8.2900e-002 0 -1.0000e+000 4.8800e-002
-4.5460e+000 -1.6990e+000 1.7170e-001 0
3.3820e+000 -6.5400e-002 -8.9300e-002 0

0 1.0000e+000 0 0

b =

2.0246e-004
1.0050e-002

-2.377 le-002
0

NUM =
0 1.2828e-003 -1.4533e-003 -5.9075e-004 7.6116e-004
0 4.5707e-003 -1.4223e-002 1.4385e-002 -4.7325e-003
0 -6.8942e-003 1.9552e-002 -1.8428e-002 5.7696e-003
0 6.5984e-006 -7.7780e-006 -6.1229e-006 6.3394e-006

DEN=
1.0000e+000 -3.7928e+000 5.4207e+000 -3.4572e+000 8.2934e-001
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FLIGHT CONDITION 3

Altitude = 35,000 ft.

Mach# = .5

u 487 fps

-8.6400e-002 0 -1.0000e+000 6.6000e-002
-9.0300e+000 -5.6200e-001 4.0400e-001 0
6.5200e+000 -6.7600e-002 2.8800e-0O 1 0

0 1.0000e+000 0 0

2.61 28e-004
3 .9270e-002

-4.7298e-002
0

NUM =
0 8.6506e-003 -9.7325e-003 -5.4763e-003 6.55 18e-003
0 3.5232e-002 -1.1012e-001 1.1292e-001 -3.8028e-002
0 -6.8031e-002 1.9967e-001 -1.9529e-001 6.3633e-002
0 3.7579e-004 -4.3564e-004 -3.6439e-004 3.9048e-004

DEN =
1.0000e+000 -3.8996e+000 5.7685e+000 -3.8336e+000 9.6460e-001
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FLIGHT CONDITION 4

Altitude = 35,000 ft.

Mach# = .7

u =681 fps

-1.2210e-001 0 -1.0000e+000 4.7000e-002
-2.2700e+001 -8.1900e-001 5.6000e-001 0
1.1990e+001 3.3400e-002 -3.3800e-001 0

0 1.0000e+000 0 0

b =
3.61 28e.-004
9. 1979e-002

-8.4648e-002
0

NUM =
0 1.3089e-002 -1.4245e-002 -8.8624e-003 1.0016e-002
0 3.7228e-002 -1.1575e-001 1.1638e-001 -3.7854e-002
0 -9.7438e-003 2.8426e-002 -2.7633e-002 8.9461e-003
0 2.4222e-005 -2.7880e-005 -2.4079e-005 2.3448e-005

DEN=
1.0000e+000 -3.7600e+000 5.4094e+000 -3.5293e+s000 8.7993e-001
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FLIGHT CONDITION 5

Altitude = sea level

Mach# = .85

u =950 fps

-5.7500e-0O1 0 -1.0000e+000 3.4000e-002
-1.1760e+002 -3.8300e+000 1.9300e+000 0
6.8000e+001 4.5600e-002 -1.4040e+000 0

0 1.0000e+000 0 0

1 .5673e-003
6.4577e-00 1

-4.7298e-001I
0

NUM =
0 8.9543e-002 -7.6861 e-002 -6.31 06e-002 5 .0423e-002
0 1.38 17e-001 -4.4282e-001 4.4328e-00 1 -1 .3863e-001
0 -1.1504e-001 3.0480e-001 -2.6591e-0O1 7.6073e-002
0 2.5053e-004 -3.304 le-004 -2.0802e-004 2.0387e-004

DEN =
1.0000e+000 -2.9141e+000 3.5741e+000 -2.2194e+000 5.5939e-001
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